CURSO DE BIOLOGÍA

Alejandro Porto Andión

 
 

Inicio       Temas de Biomoléculas             Aula virtual

 
 

Descargar pdf

TEMA 9: NUCLEÓTIDOS Y ÁCIDOS NUCLEICOS.

 

1.-INTRODUCCIÓN.

Entre las biomoléculas más importantes, por su papel en el almacenamiento y transmisión de la información genética, se encuentran los ácidos nucleicos. Los ácidos nucleicos son macromoléculas formadas por la unión de unidades básicas denominadas nucleótidos. Dicha unión se realiza mediante un tipo de enlace conocido como puente fosfodiéster. Se puede considerar que los nucleótidos son los sillares estructurales de los ácidos nucleicos, del mismo modo que los aminoácidos lo son de las proteínas o los monosacáridos de los polisacáridos. Además de desempeñar este importante papel, los nucleótidos como tales tienen  otras funciones biológicas de naturaleza energética o coenzimática.

 

2.-CONSTITUYENTES QUÍMICOS DE LOS NUCLEÓTIDOS.

 

Cuando se somete a los ácidos nucleicos a hidrólisis en condiciones suaves liberan sus unidades monoméricas constitutivas: los nucleótidos. Los sillares estructurales de otras macromoléculas, como los aminoácidos o los monosacáridos, no son susceptibles de descomponerse a su vez en unidades más simples; sin embargo los nucleótidos sí pueden sufrir hidrólisis dando lugar a una mezcla de pentosas, ácido fosfórico y bases nitrogenadas. Cada nucleótido está compuesto por una pentosa, una molécula de ácido fosfórico y una base nitrogenada enlazados de un modo característico. En la Figura 9.1 se muestran estos tres componentes de los nucleótidos.

Las pentosas que aparecen formando parte de los nucleótidos son la β-D-ribosa y su derivado, el desoxiazúcar  2'-β-D-desoxirribosa, en el que el grupo hidroxilo unido al carbono 2' fue sustituido por un átomo de hidrógeno. Ambas se encuentran en forma de anillos de furanosa (ver Figura 9.1). Las posiciones del anillo de furanosa se numeran convencionalmente añadiendo el signo (') al número de cada átomo de carbono para distinguirlas de las de los anillos de las bases nitrogenadas.

El tipo de ácido fosfórico que se encuentra en los nucleótidos es concretamente el ácido ortofosfórico, cuya estructura molecular se muestra en la Figura 9.1.

Las bases nitrogenadas (Figura 9.1) son compuestos heterocíclicos que, gracias al sistema de dobles enlaces conjugados que poseen en sus anillos, poseen un acusado carácter aromático, siendo su conformación espacial planar o casi planar. Sus átomos de nitrógeno poseen pares electrónicos no compartidos que tienen tendencia a captar protones, lo que explica su carácter débilmente básico. Los compuestos originarios de los que derivan estas bases nitrogenadas son la purina y la pirimidina. Existen formando parte de los nucleótidos dos derivados de la purina (bases púricas), que son la adenina y la guanina, y tres derivados de la pirimidina (bases pirimídicas), que son la citosina, la timina y el uracilo. Todas ellas se obtienen por adición de diferentes grupos funcionales en distintas posiciones de los anillos de la purina o de la pirimidina (por ejemplo la adenina es la 6-amino-purina, y el uracilo la 2,4-dioxipirimidina). Las características químicas de estos grupos funcionales les permiten participar en la formación de puentes de hidrógeno, lo que resulta crucial para la función biológica de los ácidos nucleicos.

 

3.-NUCLEÓSIDOS. 

Las pentosas se unen a las bases nitrogenadas dando lugar a unos compuestos denominados nucleósidos. La unión se realiza mediante un enlace N-glucosídico entre el átomo de carbono carbonílico de la pentosa (carbono 1') y uno de los átomos de nitrógeno de la base nitrogenada, el de la posición 1 si ésta es pirimídica o el de la posición 9 si ésta es púrica. El enlace N-glucosídico es una variante del tipo más habitual de enlace glucosídico (O-glucosídico), que se forma cuando un hemiacetal o hemicetal intramolecular  reacciona con una amina, en lugar de hacerlo con un alcohol, liberándose una molécula de agua.

Los nucleósidos en estado libre sólo se encuentran en cantidades mínimas en las células, generalmente como productos intermediarios en el metabolismo de los nucleótidos. Existen dos tipos de nucleósidos: los ribonucleósidos, que contienen β-D-ribosa como componente glucídico, y los desoxirribonucleósidos, que contienen β-D-desoxirribosa. En la naturaleza se encuentran ribonucleósidos de adenina, guanina, citosina y uracilo, y desoxirribonucleósidos de adenina, guanina, citosina y timina. En la Figura 9.2 se representan un nucleósido de adenina. Los nucleósidos se nombran añadiendo la terminación -osina al nombre de la base nitrogenada si ésta es púrica o bien la terminación -idina si ésta es pirimídica (ver Tabla 9.1), y anteponiendo el prefijo desoxi- en el caso de los desoxirribonucleósidos.

 

4.-NUCLEÓTIDOS.

      Los nucleótidos resultan de la unión mediante enlace éster de la pentosa de un nucleósido con una molécula de ácido fosfórico. Esta unión, en la que se libera una molécula de agua, puede producirse en cualquiera de los grupos hidroxilo libres de la pentosa, pero como regla general tiene lugar en el que ocupa la posición 5'; es decir, los nucleótidos son los 5' fosfatos de los correspondientes nucleósidos. La posesión de un grupo fosfato, que a pH 7 se encuentra ionizado, confiere a los nucleótidos un carácter marcadamente ácido. En la Figura 9.3 se muestra la estructura de un nucleótido de manera que se puedan distinguir sus tres constituyentes químicos.

Además de los nucleótidos monofosfato que acabamos de describir, que son los sillares estructurales de los ácidos nucleicos, existen en la naturaleza nucleótidos di~ y trifosfato, que resultan de la unión mediante enlace anhidro de 1 ó 2 moléculas de ácido fosfórico adicionales a la que se encuentra unida al carbono 5' de la pentosa (Figura 9.4).

Al igual que los nucleósidos, los nucleótidos pueden clasificarse en ribonucleótidos y desoxirribonucleótidos según contengan ribosa o desoxirribosa respectivamente. Existen diversas maneras de nombrar los nucleótidos; la de uso más amplio y menor ambigüedad es la que se muestra en la parte derecha de la Tabla 9.1. En ella cada nucleótido se identifica mediante tres letras mayúsculas, la primera de ellas es la inicial de la base nitrogenada, la segunda indica si el nucleótido es Mono~, Di~, o Trifosfato, y la tercera es la inicial del grupo fosfato (en inglés, phosphate); en el caso de los desoxirribonucleótidos se antepone una "d" minúscula a estas tres siglas. Otra forma de nombrarlos consiste en anteponer la palabra ácido y añadir la terminación -ílico al nombre de la base nitrogenada correspondiente; así, por ejemplo, el AMP se puede denominar también como ácido adenílico, o, dado que a pH 7 se encuentra normalmente disociado, como adenilato; este sistema de nomenclatura resulta un tanto ambiguo ya que no especifica el número de grupos fosfato. También es habitual nombrar a los nucleótidos como fosfatos de los correspondientes nucleósidos; por ejemplo, el ATP es el trifosfato de adenosina o adenosín-trifosfato. La Tabla 9.1 contiene un resumen de la nomenclatura más común de los nucleótidos y de sus constituyentes químicos.

 

 

PENTOSA

 

 

BASE

NITROGENADA

 

 

NUCLEÓSIDOS

 

NUCLEÓTIDOS

 

MONO~

 

DI~

 

TRI~

 

RIBONUCLEÓSIDOS

 

RIBONUCLEÓTIDOS

 

 

 

RIBOSA

 

 

ADENINA

GUANINA

CITOSINA

URACILO

 

 

 

 

ADENOSINA

GUANOSINA

CITIDINA

URIDINA

 

 

AMP

GMP

CMP

UMP

 

 

ADP

GDP

CDP

UDP

 

 

ATP

GTP

CTP

UTP

 

 

 

 

 

 

DESOXIRRIBOSA

 

 

 

 

 

 

 

 

ADENINA

GUANINA

CITOSINA

TIMINA

 

DESOXIRRIBO-

NUCLEÓSIDOS

 

DESOXIRRIBO-

NUCLEÓTIDOS

 

 

DESOXIADENOSINA

DESOXIGUANOSINA

DESOXICITIDINA

DESOXITIMIDINA

 

 

dAMP

dGMP

dCMP

dTMP

 

 

dADP

dGDP

dCDP

dTDP

 

 

dATP

dGTP

dCTP

dTTP

 

 

 

 

Tabla 9.1

 

5.-FUNCIONES DE LOS NUCLEÓTIDOS.

      Además de ser los sillares estructurales de los ácidos nucleicos, los nucleótidos desempeñan en las células otras funciones no menos importantes. Los enlaces anhidro que unen los grupos fosfato adicionales de los nucleótidos di~ y trifosfato son enlaces ricos en energía: necesitan un aporte energético importante para formarse y liberan esta energía cuando se hidrolizan (Figura 9.5). Esto les permite actuar como transportadores de energía. En concreto, el trifosfato de adenosina (ATP) actúa universalmente en todas las células transportando energía,  en forma de energía de enlace de su grupo fosfato terminal, desde los procesos metabólicos que la liberan hasta aquellos que la requieren. En algunas reacciones del metabolismo, otros nucleótidos trifosfato como el GTP, CTP y UTP, pueden sustituir al ATP en este papel.

Por otra parte, algunos nucleótidos o sus derivados pueden actuar como coenzimas (sustancias orgánicas no proteicas que resultan imprescindibles para la acción de muchos enzimas). Tal es el caso del NAD, NADP, FAD o FMN, nucleótidos complejos en los que aparecen bases nitrogenadas diferentes a las típicas de los ácidos nucleicos, que actúan como transportadores de electrones en reacciones metabólicas de oxidación-reducción.

Otros nucleótidos como el cAMP, un fosfato cíclico de adenosina en el que el grupo fosfato está unido mediante enlace éster al hidroxilo de la posición 3' y al de la posición 5', actúan como mediadores en determinados procesos hormonales, transmitiendo al citoplasma celular señales químicas procedentes del exterior.

 

6.-ÁCIDOS NUCLEICOS.

       Los ácidos nucleicos son polímeros de nucleótidos. En ellos la unión entre las sucesivas unidades nucleotídicas se realiza mediante enlaces tipo éster-fosfato que resultan de la reacción entre el ácido fosfórico unido al carbono 5' de la pentosa de un nucleótido y el hidroxilo del carbono 3' de la pentosa de otro nucleótido. Este tipo de unión, en la que un grupo fosfato queda unido por dos enlaces éster a dos nucleótidos sucesivos, se conoce también como puente fosfodiéster (Figura 9.6). Cuando dos nucleótidos se unen mediante un puente fosfodiéster el dinucleótido que resulta conserva un grupo 5' fosfato libre en un extremo que puede reaccionar con el grupo hidroxilo 3' de otro nucleótido, y un grupo hidroxilo 3' libre que puede reaccionar con el grupo 5' fosfato de otro nucleótido. Esta circunstancia permite que mediante puentes fosfodiéster se puedan enlazar un número elevado de nucleótidos para formar largas cadenas lineales que siempre tendrán en un extremo un grupo 5' fosfato libre y en el otro un grupo hidroxilo 3' libre.  De manera análoga a lo establecido para otros tipos de biomoléculas, el compuesto formado por una cadena de hasta 10 nucleótidos se denomina oligonucleótido, mientras que si el número de unidades nucleotídicas es superior a 10 se dice que es un polinucleótido. En la mayor parte de los casos, las cadenas polinucleotídicas de los ácido nucleicos contienen varios miles de estas unidades monoméricas unidas por puentes fosfodiéster. En la Figura 9.6 se representa un fragmento de una cadena polinucleotídica.

Del mismo modo que se definió la estructura primaria de las proteínas como su secuencia de aminoácidos, se puede definir la estructura primaria de los ácidos nucleicos como su secuencia de nucleótidos. La analogía entre ácidos nucleicos y proteínas todavía se puede llevar más allá: al igual que las cadenas polipeptídicas poseen un esqueleto monótono a partir del cual se proyectan lateralmente los grupos R de los distintos aminoácidos, los ácidos nucleicos poseen un esqueleto de las mismas características, formado por una sucesión alterna de pentosas y grupos fosfato, a partir del cual se proyectan lateralmente las distintas bases nitrogenadas (ver Figura 9.6).

Existen dos tipos principales de ácidos nucleicos: el ácido ribonucleico (RNA), que es un polímero de ribonucleótidos, y el ácido desoxirribonucleico (DNA), que es un polímero de desoxirribonucleótidos. Las diferencias en cuanto a composición entre estos dos tipos de ácido nucleico vienen dadas por las que existen entre sus nucleótidos constituyentes y residen en el tipo de pentosa y bases nitrogenadas características de uno y otro (Tabla 9.2).

Los dos tipos de ácidos nucleicos están presentes simultáneamente en todas las células vivas. En los virus, parásitos intracelulares obligados, aparecen de manera excluyente DNA o RNA.

Los ácidos nucleicos son moléculas portadoras de información. La secuencia ordenada de sus nucleótidos junto con las estructuras características de las cadenas polinucleotídicas proporcionan las bases físico-químicas para que estas macromoléculas puedan almacenar y transmitir la información genética en el proceso de reproducción de los seres vivos, lo que constituye su función biológica primordial. Tanto la estructura como la función de los ácidos nucleicos se comprenderán mejor cuando se hayan adquirido nuevos conocimientos acerca de la biología de la célula y de los mecanismos de la herencia biológica, por lo que su estudio se pospondrá para otra parte del programa de esta asignatura.

 

 

 

RNA

 

DNA

 

PENTOSA

 

 

RIBOSA

 

DESOXIRRIBOSA

 

BASES

PÚRICAS

 

 

ADENINA

GUANINA

 

ADENINA

GUANINA

 

BASES

PIRIMÍDICAS

 

 

CITOSINA

URACILO

 

CITOSINA

TIMINA